Course Syllabus

Instructor: Prof. Brad Davidson
Office: Widtsoe 341
Phone: 797-1628
e-mail: brad.davidson@usu.edu

Meeting Time/Place: MWF 2:00 - 2:50 PM, Widtsoe Hall 007
Office Hours: MW 3:00 - 4:00 PM; Th 10:00 - 11:00 AM
Prerequisites: MATH 1050 or equivalent; CHEM 1210 or equivalent

Materials:
- Text - "Chemistry: The Central Science," Brown, Lemay, Bursten, and Murphy; Prentice Hall, 11th or 12th Ed (others will work fine, too)
- Access to Sapling Learning homework site
- Scientific calculator
- iClicker

Supplemental instruction (S.I.) will also be provided for this course. Your S.I. instructor is Jared Jacobsen (jaredtjacobsen@gmail.com). The S.I. times and locations:
Monday, 4:00-4:50 PM, VSB 130
Wednesday, 7:00-7:50 PM, VSB 130

Course Web Pages: Course materials, including on-line quizzes, practice exams, recommended problems, and links to reference materials will be available on Canvas (http://online.usu.edu). Login using your A# and password.

Recitation: You must be registered for a recitation section (CHEM 1220 sections 501-504). Recitations will involve guided, group problem sessions. Participation in each recitation is worth 5 points, resulting in a total of 50 points to be applied to the final grade. Stephen Bux (stephen.bux@aggiemail.usu.edu) will be your recitation leader.

Tentative Course Outline and Exam Schedule:

<table>
<thead>
<tr>
<th>DAY</th>
<th>DATE</th>
<th>#</th>
<th>TOPIC</th>
<th>CHAPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>8/25</td>
<td>1</td>
<td>Intro, Reaction Rates and Stoichiometry</td>
<td>14</td>
</tr>
<tr>
<td>W</td>
<td>8/27</td>
<td>2</td>
<td>1st and 2nd order, half lives</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>8/29</td>
<td>3</td>
<td>Temperature and Rates</td>
<td>14</td>
</tr>
<tr>
<td>M</td>
<td>9/1</td>
<td></td>
<td>Labor Day - No Class</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>9/3</td>
<td>4</td>
<td>Reaction Mechanisms, Catalysis</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>9/5</td>
<td>5</td>
<td>Chemical Equilibrium</td>
<td>15</td>
</tr>
<tr>
<td>M</td>
<td>9/8</td>
<td>6</td>
<td>Equilibrium Constants, KEq Calculations</td>
<td>15</td>
</tr>
<tr>
<td>W</td>
<td>9/10</td>
<td>7</td>
<td>Applications, LeChatelier's Principle</td>
<td>15</td>
</tr>
<tr>
<td>F</td>
<td>9/12</td>
<td>8</td>
<td>Bronsted Lowry, Autoionization of water</td>
<td>16</td>
</tr>
<tr>
<td>M</td>
<td>9/15</td>
<td>9</td>
<td>pH Scale, Strong Acids, Strong Bases</td>
<td>16</td>
</tr>
<tr>
<td>W</td>
<td>9/17</td>
<td>10</td>
<td>Weak Acids, Weak Bases, KEa, KP</td>
<td>16</td>
</tr>
<tr>
<td>F</td>
<td>9/19</td>
<td>11</td>
<td>Acid/Base, Salts, Lewis Acid/Base</td>
<td>16</td>
</tr>
<tr>
<td>M</td>
<td>9/22</td>
<td>12</td>
<td>Review</td>
<td>14 - 16</td>
</tr>
<tr>
<td>W</td>
<td>9/24</td>
<td></td>
<td>Exam 1 - Chapters 14, 15, and 16</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>9/26</td>
<td>13</td>
<td>Common Ions, Buffers</td>
<td>17</td>
</tr>
<tr>
<td>M</td>
<td>9/29</td>
<td>14</td>
<td>Acid-Base Titrations, Equilibrium</td>
<td>17</td>
</tr>
<tr>
<td>W</td>
<td>10/1</td>
<td>15</td>
<td>Solubility</td>
<td>17</td>
</tr>
<tr>
<td>F</td>
<td>10/3</td>
<td>16</td>
<td>Complex Ions</td>
<td>17</td>
</tr>
<tr>
<td>Date</td>
<td>Day</td>
<td>Topic</td>
<td>Week</td>
<td>Notes</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>--</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>10/6</td>
<td>M</td>
<td>Precipitation</td>
<td>17</td>
<td>Wk7: Recitation 5, Quiz-5 and HW-5 (due 10/13)</td>
</tr>
<tr>
<td>10/8</td>
<td>W</td>
<td>Spontaneous Processes</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>10/10</td>
<td>F</td>
<td>Entropy, 2nd Law of Thermodynamics</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>10/13</td>
<td>M</td>
<td>Entropy, Changes in Reactions</td>
<td>19</td>
<td>Wk8: Recitation 6, Quiz-6 and HW-6 (due 10/20)</td>
</tr>
<tr>
<td>10/15</td>
<td>W</td>
<td>Gibb's Free Energy</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>10/16</td>
<td>R</td>
<td>Review</td>
<td>17-19</td>
<td></td>
</tr>
<tr>
<td>10/17</td>
<td>F</td>
<td>Fall Break - No Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/20</td>
<td>M</td>
<td>Exam 2 - Chapters 17 and 19</td>
<td></td>
<td>Wk9: No Recitation, Quiz, or HW</td>
</tr>
<tr>
<td>10/22</td>
<td>W</td>
<td>Oxidation/Reduction Reactions</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>10/24</td>
<td>F</td>
<td>Oxidation/Reduction Reactions</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>10/27</td>
<td>M</td>
<td>EMF and Spontaneity</td>
<td>20</td>
<td>Wk10: Recitation 7, Quiz-7 and HW-7 (due 11/3)</td>
</tr>
<tr>
<td>10/29</td>
<td>W</td>
<td>Concentration Effects on EMF</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>10/31</td>
<td>F</td>
<td>Corrosion and Electrolysis</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>11/3</td>
<td>M</td>
<td>Nuclear Transmutations, Rates of Decay</td>
<td>21</td>
<td>Wk11: Recitation 8, Quiz-8 and HW-8 (due 11/10)</td>
</tr>
<tr>
<td>11/5</td>
<td>W</td>
<td>Energy Change in Nuclear Reactions</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>11/7</td>
<td>F</td>
<td>Hydrogen, Halogens, and Oxygen Groups</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>
| 11/10 | M | Nitrogen, Carbon, and Boron Groups | 22 | Wk12: Recitation 9, Quiz-9 and HW-9 (due
| 11/12 | W | Review Al, Na, Fe, and Cu | 23 | |
| 11/14 | F | Metal Properties and Bonding | 23 | |
| 11/17 | M | Alloys and Transition Metals | 23 | Wk13: No Recitation, Quiz-10 and HW-10 (due 12/1) |
| 11/19 | W | Review | 25 | |
| 11/21 | F | Exam 3 - Chapters 20, 21, and 22 | 20-23| |
| 11/24 | M | Coordination Complexes | 26 | Wk14: No Recitation, continue Quiz-10 and HW-10 |
| 11/26-28 | W-F | Thanksgiving Break - No Class | | Wk15: Recitation 10, Quiz-11 and HW-11 (due 12/8) |
| 12/1 | M | Organic Functional Groups | 25 | |
| 12/3 | W | Carboxyls, peptide bonds, proteins | 25 | |
| 12/5 | F | Comprehensive Review | 14-25| |
| 12/8 | M | FINAL EXAM (1:30 - 3:20 PM) | | |

Lecture and recitations will meet on Thursday 10/16; no class on 10/17.

Exams: The exams are meant to test your understanding of the topics covered in lecture, not your ability to repeat memorized problems. Expect some questions that require you to apply your understanding to new problems. Ultimately, because you are in this course to learn chemistry, exams are meant to offer learning opportunities. There will be three in-class midterm exams (50 min) and one comprehensive final exam (110 min) for this course, covering material presented in the lecture, the textbook, the recitation, and from the homework and quizzes. The midterm exams will include 25 multiple-choice questions, each worth 4 points (100 points each), while the final exam will include 50 questions, each worth 4 points (200 points total). SCANTRONS will be provided for the in-class exams. You need to bring a calculator and #2 pencil to the exam. No iphones or ipads are allowed.

A self-correcting approach will be used for the midterm exams. You will have the opportunity, after consulting your notes, textbook, even classmates, to turn in a
2nd SCANTRON, at the beginning of the next class period, with revised answers. The average of your two SCANTRON results will apply toward your grade.

Extra Credit: For each exam, a "Topic of Interest" will be selected. An extra credit question pertaining to a "Topic of Interest" worth 4 pt will be offered on each exam.

On-line homework: There will be 11 on-line homework sets, administered through Sapling Learning (accessed through Canvas) and must be completed on your own time. Each homework set, which is worth 10 points, will be start on Monday, 2:00 PM, until the due date the following Monday, 2:00 PM. The homework sets will involve a variety of interactive questions. They will be open-book, you can have as many attempts as necessary for each problem, but 5% will be deducted for each incorrect answer. Your best 10 out of 11 homework scores will apply to your overall course grade. You will benefit the most from the quizzes if you prepare and try to take them without help from the book or your notes. You have an entire week, 24/7, to take the quizzes. Do not ask for an extension.

On-line quizzes: There will be 11 on-line quizzes that will be offered through Canvas and must be completed on your own time. Each quiz will be available from Monday, 2:00 PM, until the following Monday, 2:00 PM. Each 10 point quiz will consist of ten multiple choice type questions, drawn at random from a larger bank of questions. You may repeat the homework up to five times, with only your highest score being recorded. Your top 10 scores will apply to your overall course grade. You will benefit the most from the homework if you prepare and try to take them without help from the book or your notes. You have an entire week, 24/7, to take the quizzes. Do not ask for an extension.

iClicker Questions: A single question iClicker question will be given at the beginning of each MWF class period, except review days and exam days. These questions must be answered individually, but discussions with your classmates are allowed. Each question will be worth 2 pt for a correct answer and 1 pt for an incorrect answer. It is your responsibility to register you iClicker at iclicker.com and to remember to bring your iClicker, in working order, to class each day. At the end of the semester, everyone's five lowest clicker scores will be dropped.

Practice Problems/Tutorials: A large number of practice problems, along with video recorded tutorials have been kindly made available to us by Dr. Scott Ensign. These can be accessed through our main webpage. The login ID: ensigns Password: tadpoles2014

Class Notes: Pre-lecture notes for each chapter will be posted on this website prior to class. Annotated post-lecture notes, as well as lecture recordings will then be available subsequently.

Grading Scheme:

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three one-hour exams (3 x 100 pt)</td>
<td>300 pt</td>
</tr>
<tr>
<td>Best ten out of eleven homework sets (10 x 10 pts)</td>
<td>100 pt</td>
</tr>
<tr>
<td>Best ten out of eleven quizzes (10 x 10 pts)</td>
<td>100 pt</td>
</tr>
<tr>
<td>In-class iClicker questions (drop lowest five)</td>
<td>~50 pt</td>
</tr>
<tr>
<td>Recitation participation points</td>
<td>50 pt</td>
</tr>
<tr>
<td>Comprehensive Final</td>
<td>200 pt</td>
</tr>
<tr>
<td>Total Points</td>
<td>800 pt</td>
</tr>
</tbody>
</table>

Grade Breakdown: The grade received in the course is based on your performance on the exams, quizzes, and homework. Grades are guaranteed as given below for overall percentage score on all exams. Actual grade ranges may be curved somewhat lower, depending on the overall class average.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, A-</td>
<td>100 - 88%</td>
</tr>
<tr>
<td>B+, B, B-</td>
<td>87 - 77%</td>
</tr>
<tr>
<td>C+, C, C-</td>
<td>76 - 60%</td>
</tr>
<tr>
<td>D+, D</td>
<td>59 - 50%</td>
</tr>
<tr>
<td>F</td>
<td><50%</td>
</tr>
</tbody>
</table>

Assessment: Assessment involves measuring student progress as well as teaching effectiveness. The following assessment strategies have been incorporated into this course.

- A pre-test/post-test approach will be used to measure comprehension and teaching of important concepts. The pre-test will be administered through Blackboard and must be taken on your own time. The ten multiple choice questions of the pre-test will reappear in the final, in slightly altered form, to assess teaching and learning progress during the semester. If weaknesses are observed in specific subject areas, teaching methods will be reevaluated. Five points will be awarded for taking the pre-test, regardless of you number of questions answered correctly.
- Student evaluations will be used to evaluate course/instructor strengths and weaknesses. Constructive suggestions are welcome anytime.

IDEA Objectives: A new course evaluation system will be used this year, wherein you will be able to self-access your progress in achieving the following general objectives.

1) Have you gained factual knowledge about General Chemistry, including terminology, methods, and trends, as further described in the Detailed Learning Objectives, shown below?

2) Have you learned fundamental principles, generalizations, and theories that that describe and explain chemical reactions and chemical properties?

3) Have you further developed your ability to analyze and critically evaluate ideas, arguments, and scientific models.
Detailed Learning Objectives for Chem 1220:

Chapt 14: Describe reaction rates in terms of zero, 1st, 2nd, 3rd order processes
Describe reaction rates as a function of temperature
Predict reaction half-lives given initial conditions
Differentiate between the plots of 1st order and 2nd order reactions
Describe the action of catalysis on a chemical reaction
Describe reactions in terms of elementary steps and rate-determining steps

Chapt 15: Write equilibrium constant expressions
Perform calculations of concentrations, pressures using K_w information
Predict the direction of a reaction using the reaction quotient
Explain Le Chatelier's Principle

Chapt 16: Cite essential definitions of acids and bases
Utilize the autoionization of water to define pH and pOH, K_w, pK_w
 Employ K_w, pK_w values to calculate pH, pOH of solutions of weak acids, weak bases, and salts
Describe chemical factors that contribute to the strength of acids and bases

Chapt 17: Apply concepts of the Common Ion effect to design and construct acid/base buffer systems
Calculate acid/base titration curves and predict end-point conditions
Describe and apply K_{sp} values to determine solubility of inorganic solids
Describe the precipitation and separation of ions utilizing K_{sp} information

Chapt 19: Describe and apply concepts of chemical spontaneity and the 2nd Law of Thermodynamics
Describe and apply the concepts of entropy to chemical reactions
Use Gibb's Free Energy to predict chemical equilibrium

Chapt 20: Balance chemical reactions that involve changes in oxidation states
Express oxidation/reduction in terms of half reactions
Describe voltaic cells and calculate potentials using standard reduction potentials
Predict the spontaneity of oxidation/reduction reactions
Employ the Nernst Equation to calculate cell potentials and chemical concentrations
Describe the essential reactions related to common battery systems and fuel cells
Describe the chemical reactions of corrosion

Chapt 21: Describe and differentiate between fundamental types of radioactivity and radioactive processes
Predict nuclear stability based on proton/neutron ratios
Apply 1st order kinetics for radioactive decay
Compare the energetic and mass aspects of nuclear fission and nuclear fusion

Chapt 22: Describe the fundamental aspects of the reactivity of non-metal elements, including hydrogen, the Noble gases, the halogens

Chapt 23: Identify the major chemical processes for purifying iron, steel, aluminum, copper, and sodium.

Chapt 24: Describe the structure and bonding in simple coordination complexes of transition metals like Fe, Cu
Predict simple electronic configurations for transition metal ions using the periodic table
Predict magnetism using simple models of Crystal Field Theory
Discuss how the color of transition metal complexes is related to d-orbital splitting

Chapt 25: Identify and draw the structure of hydrocarbon alkanes, alkenes, alkynes, and aromatics
Identify and draw the functional groups ethers, aldehydes, ketones, acids, esters, and amides
Identify the chemical structure of amino acids and polypeptides
Identify the chemical structure of carbohydrate sugars and fats
Identify the chemical structure of nucleic acids and DNA, RNA

Online Links to Chemistry Materials:
- Los Alamos Periodic Table Site: periodic.lanl.gov/index.shtml
- General Chemistry Starting Points for Students: www.chem1.com/chemed/genchem.shtml
- General Chemistry Wikibook: en.wikibooks.org/wiki/General_Chemistry
- Website for the American Chemical Society: portal.acs.org/portal/acs/corg/content
- This Week in the History of Chemistry: web.lemoyne.edu/~giunta/week.html#29

Suggestions:
1. Keep up with lecture and reading materials.
2. Make sure to do the on-line homework problems! In addition to helping your overall comprehension and exam performance, do not miss easy-to-obtain points.
3. Work the problems! Work the problems! Work the problems! (practice makes perfect)
4. Do practice exams under realistic conditions. Do not look at the answer key before you are done.
5. Take advantage of the SI and the instructor. Go to SI sessions and office hours.
6. Use the web sites listed above.
7. Study in groups, but make sure everyone contributes.

UNIVERSITY POLICIES & PROCEDURES

Academic Freedom and Professional Responsibilities

Academic freedom is the right to teach, study, discuss, investigate, discover, create, and publish freely. Academic freedom protects the rights of faculty members in teaching and of students in learning. Freedom in research is fundamental to the advancement of truth. Faculty members are entitled to full freedom in teaching, research, and creative activities, subject to the limitations imposed by professional responsibility. Faculty Code Policy #403 further defines academic freedom and professional responsibilities.

Academic Integrity – "The Honor System"

Each student has the right and duty to pursue his or her academic experience free of dishonesty. The Honor System is designed to establish the higher level of conduct expected and required of all Utah State University students. The Honor Pledge: To enhance the learning environment at Utah State University and to develop student academic integrity, each student agrees to the following Honor Pledge:

"I pledge, on my honor, to conduct myself with the foremost level of academic integrity."

A student who lives by the Honor Pledge is a student who does more than not cheat, falsify, or plagiarize. A student who lives by the Honor Pledge:

- Espouses academic integrity as an underlying and essential principle of the Utah State University community;
- Understands that each act of academic dishonesty devalues every degree that is awarded by this institution; and
- Is a welcomed and valued member of Utah State University.

Academic Dishonesty

The instructor of this course will take appropriate actions in response to Academic Dishonesty, as defined the University’s Student Code. Acts of academic dishonesty include but are not limited to:

- **Cheating**: using, attempting to use, or providing others with any unauthorized assistance in taking quizzes, tests, examinations, or in any other academic exercise or activity. Unauthorized assistance includes:
 - Working in a group when the instructor has designated that the quiz, test, examination, or any other academic exercise or activity be done "individually;"
 - Depending on the aid of sources beyond those authorized by the instructor in writing papers, preparing reports, solving problems, or carrying out other assignments;
 - Substituting for another student, or permitting another student to substitute for oneself, in taking an examination or preparing academic work;
 - Acquiring tests or other academic material belonging to a faculty member, staff member, or another student without express permission;
 - Continuing to write after time has been called on a quiz, test, examination, or any other academic exercise or activity;
 - Submitting substantially the same work for credit in more than one class, except with prior approval of the instructor; or engaging in any form of research fraud.
- **Falsification**: altering or fabricating any information or citation in any academic exercise or activity.
- **Plagiarism**: representing, by paraphrase or direct quotation, the published or unpublished work of another person as one’s own in any academic exercise or activity without full and clear acknowledgment. It also includes using materials prepared by another person or by an agency engaged in the sale of term papers or other academic materials.

Sexual Harassment

Sexual harassment is defined by the Affirmative Action/Equal Employment Opportunity Commission as any "unwelcome sexual advances, requests for sexual favors, and other verbal or physical conduct of a sexual nature." If you feel you are a victim of sexual harassment, you may talk to or file a complaint with the Affirmative Action/Equal Employment Opportunity Office located in Old Main, Room 161, or call the AA/EEO Office at (435) 797-1266.

Withdrawal Policy and "I" Grade Policy

Students are required to complete all courses for which they are registered by the end of the semester. In some cases, a student may be unable to complete all of the coursework because of extenuating circumstances, but not due to poor performance or to retain financial aid. The term ‘extenuating’ circumstances includes: (1) incapacitating illness which prevents a student from attending classes for a minimum period of two weeks, (2) a death in the immediate family, (3) financial responsibilities requiring a student to alter a work schedule to secure employment, (4) change in work schedule as required by an employer, or (5) other emergencies deemed appropriate by the instructor.

Students with Disabilities

Students with ADA-documented physical, sensory, emotional or medical impairments may be eligible for reasonable accommodations. Veterans may also be eligible for services. All accommodations are coordinated through the Disability Resource Center (DRC). Please contact the DRC prior to or as early in the semester as possible. Alternate formats for course content are available with advanced notice.

Contacting the Disability Resource Center (DRC):
Disability related resources for current students:

- **DRC Student Handbook** (http://www.usu.edu/drc/currentstudents/handbook/)
- **Disability Related Scholarships** (http://www.usu.edu/drc/currentstudents/scholarships/)
- **Campus Resources** (http://www.usu.edu/drc/currentstudents/campusresources/)
- **Documentation Guidelines** (http://www.usu.edu/drc/prospectivestudents/docguide/)
- **Online Resources for Students with Disabilities** (http://www.usu.edu/drc/currentstudents/onlineresources/)

Diversity Statement

Regardless of intent, careless or ill-informed remarks can be offensive and hurtful to others and detract from the learning climate. If you feel uncomfortable in a classroom due to offensive language or actions by an instructor or student(s) regarding ethnicity, gender, or sexual orientation, contact:

- **Student Services**: http://www.usu.edu/studentservices/, 435.797.1712, studentservices@usu.edu
- **Student Advocates**: http://www.usu.edu/ususa/legal/, 435.797.2912, TSC 340
- **Access and Diversity**: http://www.usu.edu/accesscenter/, 435.797.1728, access@usu.edu
- **Multicultural Programs**: http://www.usu.edu/accesscenter/multiculture/, 435-797-1728, TSC 315
- **LGBTQA Programs**: http://www.usu.edu/accesscenter/lgbtqa/, 435-797-GAYS, TSC 314
- **Provost's Office Diversity Resources**: http://www.usu.edu/provost/faculty/diversity/, (435) 797-8176

You can learn about your student rights by visiting:

Grievance Process

Students who feel they have been unfairly treated may file a grievance through the channels and procedures described in the Student Code: [Article VII. Grievances](http://www.usu.edu/studentservices/studentcode/article7.cfm).

Full details for USU Academic Policies and Procedures can be found at:

- **Student Conduct** (http://www.usu.edu/studentconduct)
- **Student Code** (http://www.usu.edu/studentservices/studentcode/)
- **Academic Integrity**

Emergency Procedures

In the case of a drill or real emergency, classes will be notified to evacuate the building by the sound of the fire/emergency alarm system or by a building representative. In the event of a disaster that may interfere with either notification, evacuate as the situation dictates (i.e., in an earthquake when shaking ceases or immediately when a fire is discovered). Turn off computers and take any personal items with you. Elevators should not be used; instead, use the closest stairs.

<table>
<thead>
<tr>
<th>Date</th>
<th>Details</th>
<th>Due by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon Sep 1, 2014</td>
<td>1220-Pre-test (https://usu.instructure.com/courses/317565/assignments/1725641)</td>
<td>2pm</td>
</tr>
<tr>
<td>Mon Sep 8, 2014</td>
<td>1220-Quiz1 (https://usu.instructure.com/courses/317565/assignments/1725643)</td>
<td>2pm</td>
</tr>
<tr>
<td>Wed Sep 17, 2014</td>
<td>1220-Quiz2 (https://usu.instructure.com/courses/317565/assignments/1725644)</td>
<td>2pm</td>
</tr>
<tr>
<td>Mon Sep 22, 2014</td>
<td>1220-Quiz3 (https://usu.instructure.com/courses/317565/assignments/1725642)</td>
<td>2pm</td>
</tr>
<tr>
<td>Mon Oct 6, 2014</td>
<td>1220-Quiz4 (https://usu.instructure.com/courses/317565/assignments/1725640)</td>
<td>2pm</td>
</tr>
<tr>
<td>Mon Oct 13, 2014</td>
<td>1220-Quiz5 (https://usu.instructure.com/courses/317565/assignments/1725653)</td>
<td>2pm</td>
</tr>
<tr>
<td>Mon Oct 20, 2014</td>
<td>1220-Quiz6 (https://usu.instructure.com/courses/317565/assignments/1725657)</td>
<td>2pm</td>
</tr>
<tr>
<td>Mon Nov 3, 2014</td>
<td>1220-Quiz7 (https://usu.instructure.com/courses/317565/assignments/1725655)</td>
<td>2pm</td>
</tr>
<tr>
<td>Date</td>
<td>Assignment</td>
<td>Due by</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Mon Nov 10, 2014</td>
<td>1220-Quiz8</td>
<td>2pm</td>
</tr>
<tr>
<td>Mon Nov 17, 2014</td>
<td>1220-Quiz9</td>
<td>2pm</td>
</tr>
<tr>
<td>Mon Dec 8, 2014</td>
<td>1220-Quiz10</td>
<td>1:30pm</td>
</tr>
<tr>
<td></td>
<td>1220-Quiz11</td>
<td>1:30pm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Assignment</th>
<th>Due by</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1220-Quiz1</td>
<td>1220-Quiz1-bank</td>
</tr>
<tr>
<td></td>
<td>1220-Quiz3</td>
<td>1220-Quiz4</td>
</tr>
<tr>
<td></td>
<td>1220-Quiz5</td>
<td>1220-Quiz6</td>
</tr>
<tr>
<td></td>
<td>1220-Quiz7</td>
<td>1220-Quiz8</td>
</tr>
<tr>
<td></td>
<td>1220-Quiz9</td>
<td>1220-Quiz10</td>
</tr>
<tr>
<td></td>
<td>9/10/14</td>
<td>9/3/14</td>
</tr>
<tr>
<td></td>
<td>9/5/14</td>
<td>9/8/14</td>
</tr>
<tr>
<td></td>
<td>Exam 1</td>
<td>Exam 2</td>
</tr>
<tr>
<td></td>
<td>Final Exam</td>
<td></td>
</tr>
</tbody>
</table>