There is no required text for the course, but there will be required readings that will be made available by the instructor.

Lecture Overheads - Canvas
We will be using Canvas for the management of Chem 6770. Copies of many required readings and some lecture overheads will be posted on Canvas (https://online.usu.edu/).

Course Withdrawal:
Refer to the current academic year registration calendar for details and deadlines concerning withdrawal conditions and deadlines.

Provisions:
The administration of Chem 6770 will adhere strictly to the academic policies outlined in the most recent USU General Catalog, which can be found here: http://catalog.usu.edu/index.php
Students not enrolled in the course may sit in only with instructor approval.

Late assignments:
Late assignments will not be accepted except under extenuating circumstances that will be considered on an individual basis. Missed quizzes cannot be made up unless the absence was approved by the instructor or resulted from an extenuating circumstance that will be considered on an individual basis.

Course Content:
Chemistry 6770 is a graduate course and a part of the Biochemistry graduate core curriculum. It will cover the theory and practical approaches for an array of biochemical and biophysical techniques and is designed to provide you with a level of understanding sufficient to guide you in the acquisition and interpretation of appropriate data sets.

Course Assessment:
Students in this class are expected to develop an understanding of the techniques and ideas covered in the course. Some will be covered in much greater depth than others and this will be reflected in the testing of the material. While the instructor will guide the course, the students will be responsible for adequately preparing for lecture as well as presenting a significant amount of the material to their peers. Attendance and participation are vital for this type of course and while attendance is not graded, participation is mandatory. A total of 25 points will be assigned based on participation in presentations and class discussions. Again, attendance is not mandatory, but you cannot participate if you are absent. It is the students’ responsibility to communicate with the instructor concerning their standing with regard to their participation points.
OBJECTIVE

In planning this course, I have identified three main course objectives:
1. Gaining factual knowledge (terminology, classifications, methods, trends)
2. Learning fundamental principles, generalizations, or theories
3. Learning to apply course materials (to improve rational thinking, problem solving and decisions)

USU welcomes students with disabilities. If you have, or suspect you may have, a physical, mental health, or learning disability that may require accommodations in this course, please contact the Disability Resource Center (DRC) as early in the semester as possible (University Inn # 101, 435-797-2444, drc@usu.edu). All disability related accommodations must be approved by the DRC. Once approved, the DRC will coordinate with faculty to provide accommodations.

Tentative Class Topics

Detection and quantification of proteins and/or nucleic acids
 SDS PAGE
 Native PAGE
 1D vs. 2D
 Protein Blots (discuss types)
 UV-Vis/Extinction Coefficient (Beer’s Law)
 Colorimetric assays
 Agarose Gel Electrophoresis
Tags (i.e. fluorescent labels and “click” chemistry)

How do I characterize my protein?
- Stability – (Russ Middaugh Paper)
- Gel Filtration
- Mass Spectrometry
- Structure (i.e. CD, X-Ray, NMR
- Sequencing

How do I know two proteins interact/measure how well they interact?
- Pull-down/immunoprecipitation
- FRET
- Yeast 2-hybrid
- ITC (isothermal titration calorimetry)
- SPR (Surface Plasmon Resonance)
- Static/Dynamic Light Scattering
- Anisotropy
- Chemical crosslinking
- Analytical ultracentrifugation

Microscopy
- Light microscopy
 - Principles (Numerical aperture, Diffraction limit)
- Fluorescence microscopy
 - Principles (Jablonski Diagrams)
- Electron Microscopy
- Scanning techniques
- Novel methodologies