| Criteria | Not addressed | Novice | Intermediate | Expert | |--|---|--|---|---| | Introduction: Context | | | | _ | | Demonstrates a clear understanding of the big picture; Why is this question important/ interesting in the field of biochemistry? | The importance of the question is not addressed. How the question relates within the broader context of biochemistry is not addressed. | The writer provides a generic or vague rationale for the importance of the question. The writer provides vague or generic references to the broader context of biochemistry. | The writer provides one explanation of why others would find the topic interesting. The writer provides some relevant context for the research question(s). | The writer provides a clear sense of why this knowledge may be of interest to a broad audience The writer describes the current gaps in our understanding of this field and explains how this research will help fill those gaps | | Introduction: Accuracy a | and relevance | | | | | Content knowledge is accurate, relevant and provides appropriate background for reader including defining critical terms. | Background information is missing or contains major inaccuracies. Background information is accurate, but irrelevant or too disjointed to make relevance clear Primary literature references are absent or irrelevant. May contain website or secondary references websites or review papers are not primary | Background omits information or contains inaccuracies which detract from the major point of the paper. Background information is overly narrow or overly general (only partially relevant). Primary literature references, if present, are inadequately explained. | Background information may contain minor omissions or inaccuracies that do not detract from the major point of the paper. Background information has the appropriate level of specificity to provide relevant context. Primary literature references are relevant and adequately explained but few. | Background information is completely accurate Background information has the appropriate level of specificity to provide concise and useful context to aid the reader's understanding. Primary literature references are relevant, adequately explained, and indicate a reasonable literature search. | | Criteria | Not addressed | Novice | Intermediate | Expert | |--|---|--|---|--| | Methods: Controls and r | eplication | | | | | Appropriate controls (including appropriate replication) are present and explained. If the student designed the experiment: | Controls and/ors replication are nonexistent, Controls and/or replication may have been present, but just not described or Controls and/or replication were described but were inappropriate. | Controls consider one major relevant factor Replication is modest (weak statistical power). | Controls take most relevant factors into account Controls include positive and negative controls if appropriate Replication is appropriate (average sample size with reasonable statistical power). | Controls consider <u>all</u> relevant factors Controls have become methods of differentiating between multiple hypotheses. Replication is robust (sample size is larger than average for the type of study). | | If the instructor designed the experiment: | Student fails to mention controls and/or replication or mentions them, but the description or explanation is incomprehensible. | Student explanations of controls and/or replication are vague, inaccurate or indicate only a rudimentary sense of the need for controls and or replication | Student evidences a reasonable sense of why controls/ replication matter to this experiment Explanations are mostly accurate, but some | Explanations of why these controls matter to this experiment are thorough, clear and tied into sections on assumptions and limitations | | Methods: Experimental design | | | | | | Experimental design is likely to produce salient and fruitful results (tests the hypotheses posed.) Methods are: | inappropriate poorly explained / indecipherable | appropriate clearly explained drawn directly from coursework not modified where appropriate | appropriate clearly explained modified from coursework in appropriate places or drawn directly from a novel source (outside the course) | appropriate clearly explained a synthesis of
multiple previous
approaches or an
entirely new
approach | | Criteria | Not addressed | Novice | Intermediate | Expert | |---|--|---|---|---| | Results: Data selection | | | | | | Data are comprehensive, accurate and relevant. | Data are too incomplete or haphazard to provide a reasonable basis for testing the hypothesis | At least one relevant dataset per hypothesis is provided but some necessary data are missing or inaccurate Reader can satisfactorily evaluate some but not all of writer's conclusions. | Data are relevant, accurate and complete with any gaps being minor. Reader can fully evaluate whether the hypotheses were supported or rejected with the data provided. | Data are relevant, accurate and comprehensive. Reader can fully evaluate validity of writer's conclusions and assumptions. Data may be synthesized or manipulated in a novel way to provide additional insight. | | Results: Data presentation |)n | | | | | Data are summarized in a logical format. Table or graph types are appropriate. Data are properly labeled including units. Graph axes are appropriately labeled and scaled and captions are informative and complete. Presentation of data: | Labels or units are missing which prevent the reader from being able to derive any useful information from the graph. Presentation of data is in an inappropriate format or graph type Captions are confusing or indecipherable. | contains some errors in or omissions of labels, scales, units etc., but the reader is able to derive some relevant meaning from each figure. is technically correct but inappropriate format prevents the reader from deriving meaning or using it. Captions are missing or inadequate | contains only minor mistakes that do not interfere with the reader's understanding and the figure's meaning is clear without the reader referring to the text. Graph types or table formats are appropriate for data type. includes captions that are at least somewhat useful. | contains no mistakes uses a format or graph type which highlights relationships between the data points or other relevant aspects of the data. may be elegant, novel, or otherwise allow unusual insight into data has informative, concise and complete captions. | #### Discussion: Conclusions based on data selected Conclusion is clearly and logically drawn from data provided. A logical chain of reasoning from hypothesis to data to conclusions is clearly and persuasively explained. Conflicting data, if present, are adequately addressed. - Conclusions have little or no basis in data provided. - Connections between hypothesis, data and conclusion are non-existent, limited, vague or otherwise insufficient to allow reasonable evaluation of their merit. - Conflicting data are not addressed. - Conclusions have some direct basis in the data, but may contain some gaps in logic or data or are overly broad. - Connections between hypothesis, data and conclusions are present but weak. - Conflicting or missing data are poorly addressed. - Conclusions are clearly and logically drawn from and bounded by the data provided with no gaps in logic. - A reasonable and clear chain of logic from hypothesis to data to conclusions is made. - Conclusions attempt to discuss or explain conflicting or missing data. - Conclusions are completely justified by data. - Connections between hypothesis, data, and conclusions are comprehensive and persuasive. - Conclusions address and logically refute or explain conflicting data - Synthesis of data in conclusion may generate new insights. | Discussion: Alternative of | | nem 5/20 Lab Report Rubri | | 3 | |---|--------------------|---|--|---| | Alternative explanations are considered and clearly eliminated by data in a persuasive discussion. Alternative explanations: | | are provided in the discussion only may include some trivial or irrelevant alternatives. Discussion addresses some but not all of the alternatives in a reasonable way. | Some alternative explanations are tested as hypotheses; those not tested are reasonably evaluated in the discussion. Discussion of alternatives is reasonably complete, uses data where possible and results in at least some | have become a suite of interrelated hypotheses that are explicitly tested with data. Discussion and analysis of alternatives is based on data, complete and persuasive with a single clearly supported | | Discussion Vinited | f decien | | alternatives being persuasively dismissed. | explanation
remaining by the end
of the discussion. | | Discussion: Limitations o | | 1. 1. | 1 1 1 1 1 1 | | | Limitations of the data and/or experimental design and corresponding implications discussed. <u>Limitations:</u> | are not discussed. | are discussed in a
trivial way (e.g.
"human error" is the
major limitation
invoked). | are relevant, but not addressed in a comprehensive way Conclusions fail to address or overstep the bounds indicated by the limitations. | are presented as factors modifying the author's conclusions. Conclusions take these limitations into account. | | Discussion: Implications | of research | | | | | Paper gives a clear indication of the implications and direction of the research in the future. Future directions and implications of this research: | are not addressed. | are vague,
implausible (not
possible with current
technologies or
methodologies),
trivial or off topic. | are useful, but indicate incomplete knowledge of the field (suggest research that has already been done or is improbable with current methodologies) suggest a fruitful line of research, but lack detail to indicate motivations for or implications of the future research. | forward. | ### **Use of Primary Literature** Relevant and reasonably complete discussion of how this research project relates to others' work in the field (scientific context provided). # <u>Primary literature is</u> defined as: - peer reviewed - reports original data - authors are the people who collected the data. - published by a noncommercial publisher. Primary literature references are not included. - Primary literature references are limited (only one or two primary references in the whole paper) - References to the textbook, lab manual, or websites may occur. - Citations are at least partially correctly formatted. Note that proper format includes a one-to-one correspondence between in-text and end of text references (no references at end that are not in text and vice versa) as well as any citation style currently in use by a relevant biochemistry journal. - Primary literature references are more extensive (at least one citation for each major concept) - Literature cited is predominantly (> 90%) primary literatures. - Primary literature references are used primarily to provide background information and context for conclusions - Primary literature references - Primary literature references indicate an extensive literature search was performed. - Primary literature references frame the question in the introduction by indicating the gaps in current knowledge of the field. - Primary literature references are used in the discussion to make the connections between the writer's work and other research in the field clear - Primary literature references are properly and accurately cited ### Writing quality Grammar, word usage and organization facilitate the reader's understanding of the paper. - Grammar and spelling errors detract from the meaning of the paper. - Word usage is frequently confused or incorrect. - Subheadings are not used or poorly used. - Information is presented in a haphazard way. - Grammar and spelling mistakes do not hinder the meaning of the paper. - General word usage is appropriate, although use of technical language is may have occasional mistakes. - Subheadings are used and aid the reader somewhat. - There is some evidence of an organizational strategy though it may have gaps or repetitions. - Grammar and spelling have few mistakes. - Word usage is accurate and aids the reader's understanding. - Distinct sections of the paper are delineated by informative subheadings. - A clear organizational strategy is present with a logical progression of ideas. - Correct grammar and spelling. - Word usage facilitates reader's understanding. - Informative subheadings significantly aid reader's understanding. - A clear organizational strategy is present with a logical progression of ideas. There is evidence of an active planning for presenting information; this paper is easier to read than most. ## References The original reference for the rubric is: Timmerman, B. E. C., Strickland, D. C., Johnson, R. L., & Payne, J. R. (2011). Development of a 'universal's rubric for assessing undergraduates' scientific reasoning skills using scientific writing. *Assessment & Evaluation in Higher Education*, *36*, 509-547. An example of using the rubric for evaluating student outcomes: Feldon, D. F., Timmerman, B. E., Stowe, K., & Showman, R. (2010). Translating expertise into effective instruction: The impacts of cognitive task analysis (CTA) on lab report quality and student retention in the biological sciences. *Journal of Research in Science Teaching*, 47, 1165-1185.